Difference between revisions of "2012 Winter Project Week: DTI Change Modeling"

From NAMIC Wiki
Jump to: navigation, search
Line 39: Line 39:
 
==References==
 
==References==
 
* Casey B. Goodlett, P. Thomas Fletcher, John H. Gilmore, Guido Gerig. Group Analysis of DTI Fiber Tract Statistics with Application to Neurodevelopment. NeuroImage 45 (1) Supp. 1, 2009. p. S133-S142
 
* Casey B. Goodlett, P. Thomas Fletcher, John H. Gilmore, Guido Gerig. Group Analysis of DTI Fiber Tract Statistics with Application to Neurodevelopment. NeuroImage 45 (1) Supp. 1, 2009. p. S133-S142
* [http://www.na-mic.org/Wiki/index.php/Projects:TractLongitudinalDTI/Details of the framework]
+
* [http://www.na-mic.org/Wiki/index.php/Projects:TractLongitudinalDTI/ Details of the framework]
 
</div>
 
</div>

Revision as of 09:45, 28 November 2011

Home < 2012 Winter Project Week: DTI Change Modeling

Key Partners

  • Utah: Anuja Sharma, Guido Gerig
  • Iowa: Hans Johnson (HD Project)


Objective

We have developed a new framework for spatiotemporal analysis of parameterized functions attributed by properties of 4D longitudinal image data. Our objective is to apply the framework to model patient-specific changes along white matter tracts using serial DTI data from subjects with Huntington's disease. As an extension, multiple subjects could be modeled and compared for assessment of normative trends.

Approach, Plan

  • Co-register all available intra-subject, serial DTI volumes to create a consistent atlas tract geometry (and inter-subject if multiple subjects are to be compared eventually).
  • Perform atlas-based tractography followed by back-mapping to assemble scalar diffusion parameters as functions of arc length along tracts of interest.
  • Apply our methodology to quantify longitudinal DTI changes along tracts using these arc length parameterized diffusion functions.

Progress

To be added

References

  • Casey B. Goodlett, P. Thomas Fletcher, John H. Gilmore, Guido Gerig. Group Analysis of DTI Fiber Tract Statistics with Application to Neurodevelopment. NeuroImage 45 (1) Supp. 1, 2009. p. S133-S142
  • Details of the framework