Difference between revisions of "2010 Summer Project Week Shape Analysis UNC"

From NAMIC Wiki
Jump to: navigation, search
Line 5: Line 5:
  
 
==Motivations: Clinical Applications in Orthodontics==
 
==Motivations: Clinical Applications in Orthodontics==
We are aiming to develop methods to compute Shape Correspondence and Shape Analysis to the Orthodontic Clinical field. The main challenge in this approach is the complexity of the surfaces processed, i.e. Cranio-Maxillo-Facial anatomy. Until now, Shape Correspondence was applied almost entirely to brain morphometry studies. SPHARM-PDM Toolbox has been used until now for different Ortho applications, however the performance of this methodological framework does not work satisfactorily for Full Mandibles. Our main interest focuses right now in Entropy-Based Particle Systems [1], that does not rely in parametric fields or spherical topology for establishing correspondence in a Surface Ensemble.
+
We are aiming to develop methods to compute Shape Correspondence and Shape Analysis to the Orthodontic Clinical field. The main challenge in this approach is the complexity of the surfaces processed, i.e. Cranio-Maxillo-Facial anatomy. Until now, Shape Correspondence was applied almost entirely to brain morphometry studies. SPHARM-PDM Toolbox has been used until now for different Ortho applications, however the performance of this methodological framework does not work satisfactorily for Full Mandibles. Our main interest focuses right now in Entropy-Based Particle Systems [1], that does not rely in parametric fields or spherical topology for establishing correspondence in a Surface Ensemble.  
 
 
 
 
 
 
Different NAMIC Tools are used for this purpose, and also some tools have been already developed. Many others are under current development, but some desirable thing would be to merge all the tools in the same framework, in order our work can be useful in other applications.
 
 
 
Three projects are currently in progress:
 
 
 
<div style="margin: 20px;">
 
* '''Temporomandibular Joint (TMJ) Osteoarthritis (OA).''' Shape analysis used to localize and quantify the condylar morphological differences in the progression of the Temporomandibular Joint Osteoarthritic disease. The information obtained can be used in the clinical field to better elucidate the nature of the disease and therefore aim for a better treatment planning.
 
* '''Asymmetry.''' Shape analysis is used to measure distances between an anatomical structure and its mirror is an approach to localize asymmetry and to quantify the left and right differences in the anatomy of interest (3D cephalometries).  This information can be used in corrective surgery planning.
 
* '''Skeletodental deformities corrective surgery.''' Test the changes in hard-tissue after corrective surgery for skeletal dento-facial deformities. Shape analysis can give useful stability information.
 
 
</div>
 
</div>
  

Revision as of 18:59, 16 June 2010

Home < 2010 Summer Project Week Shape Analysis UNC

Motivations: Clinical Applications in Orthodontics

We are aiming to develop methods to compute Shape Correspondence and Shape Analysis to the Orthodontic Clinical field. The main challenge in this approach is the complexity of the surfaces processed, i.e. Cranio-Maxillo-Facial anatomy. Until now, Shape Correspondence was applied almost entirely to brain morphometry studies. SPHARM-PDM Toolbox has been used until now for different Ortho applications, however the performance of this methodological framework does not work satisfactorily for Full Mandibles. Our main interest focuses right now in Entropy-Based Particle Systems [1], that does not rely in parametric fields or spherical topology for establishing correspondence in a Surface Ensemble.

Key Investigators

  • UNC SPHARM: Beatriz Paniagua, Martin Styner, Corentin Hamel
  • UNC Particle System: Beatriz Paniagua, Ipek Oguz, Clement Vachet
  • UNC Shape Analysis, Application and Visualization: Beatriz Paniagua, Martin Styner, Lucia Cevidanes

Project

Objective

Approach, Plan

Progress

References

[1] J Cates, P T Fletcher, M Styner, M Shenton, R Whitaker. Shape Modeling and Analysis with Entropy-Based Particle Systems. Information Processing in Medical Imaging IPMI 2007, LNCS 4584, pp. 333-345, 2007.