2017 Winter Project Week/DeepLearningMethodology

From NAMIC Wiki
Jump to: navigation, search
Home < 2017 Winter Project Week < DeepLearningMethodology

This is a 3 hour introductory course on Deep Learning Methodology for Project Week #24.

Instructor: Mohsen Ghafoorian


Basic concepts: (60-75 min)

  • loss function (categorical cross entropy, MSE)
  • stochastic gradient descent
  • update rules (SGD issue, Momentum, Nestrov, Adadelta, RMSProp, Adam)
  • learning rate
  • activation functions
  • why non-linearities?
  • Sigmoid (vanishing gradient problem, non-zero centered features), tanh
  • relu (dead relu issue), leaky relu, prelu
  • weight initialization
  • regularization
  • augmentation
  • L1/L2
  • dropout
  • batch norm
  • network babysitting (bad learning rate, bad initialization, overfitting)

State of the art CNN methods: (60 min)

  • alexnet
  • vgg net
  • google net
  • resnet
  • highway nets
  • dense nets
  • GANs

Biomedical segmentation

  • sliding window
  • fully convolutional nets
  • Unet