Projects:DTIVolumetricWhiteMatterConnectivity

From NAMIC
Jump to: navigation, search
Home < Projects:DTIVolumetricWhiteMatterConnectivity
Back to NA-MIC Collaborations, Utah Algorithms

DTI Volumetric White Matter Connectivity

Description

We have developed a PDE-based approach to white matter connectivity from DTI that is founded on the principal of minimal paths through the tensor volume. Our method computes a volumetric representation of a white matter tract given two endpoint regions. We have also developed statistical methods for quantifying the full tensor data along these pathways, which should be useful in clinical studies using DT-MRI. This work has been accepted to IPMI 2007.

Five extracted fiber tracts (top view)
Five extracted fiber tracts (side angle view)

Effecient GPU implementation: We have recently implemented a fast solver for the volumetric white matter connectivity using graphics hardware, i.e., the Graphics Processing Unit (GPU). This method takes advantage of the massively parallel nature of modern GPUs and runs 50-100 times faster than a standard implementation on the CPU. The fast solver allows interactive visualization of white matter pathways. We have developed a user interface in which a user can select two endpoint regions for the white matter tract of interest, which is typically computed and displayed within 1-3 seconds. This work has been submitted to VIS 2007.

A screen shot from the interactive white matter connectivity solver. Shown are two selected endpoint regions and the resulting white matter pathway.

Key Investigators

Utah 1:Tom Fletcher, Ran Tao, Won-Ki Jeong, Ross Whitaker

Publications

In Print